GENERALIZED FUZZY VALUED $theta$-Choquet INTEGRALS AND THEIR DOUBLE-NULL ASYMPTOTIC ADDITIVITY

نویسندگان

  • Gui-jun Wang School of Mathematics Science, Tianjin Normal University, Tianjin 300387, China
  • Xiao-ping Li School of Management, Tianjin Normal University, Tianjin 300387, China
چکیده مقاله:

The generalized fuzzy valued $theta$-Choquet integrals will beestablished for the given $mu$-integrable fuzzy valued functionson a general fuzzy measure space, and the convergence theorems ofthis kind of fuzzy valued integral are being discussed.Furthermore, the whole of integrals is regarded as a fuzzy valuedset function on measurable space, the double-null asymptoticadditivity and pseudo-double-null asymptotic additivity of thefuzzy valued set functions formed are studied when the fuzzymeasure satisfies autocontinuity from above (below).\

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Fuzzy Valued Θ-choquet Integrals and Their Double-null Asymptotic Additivity

The generalized fuzzy valued θ-Choquet integrals will be established for the given μ-integrable fuzzy valued functions on a general fuzzy measure space, and the convergence theorems of this kind of fuzzy valued integral are being discussed. Furthermore, the whole of integrals is regarded as a fuzzy valued set function on measurable space, the double-null asymptotic additivity and pseudo-double-...

متن کامل

Discrete Interval–valued Choquet Integrals

For a fixed finite universe U = {u1, . . . , un}, a fuzzy subset F of U is given by its membership function F : U → [0, 1] (we will not distinguish fuzzy subsets and the corresponding membership functions notations). For several practical purposes, especially in multicriteria decision making, the expected value E(F ) of F should be introduced. The original Zadeh approach in [11] was based on a ...

متن کامل

Generalized interval-valued intuitionistic fuzzy Hamacher generalized Shapley Choquet integral operators for multicriteria decision making

The interval-valued intuitionistic fuzzy set (IVIFS) which is an extension of the Atanassov’s intuitionistic fuzzy set is a powerful tool for modeling real life decision making problems. In this paper, we propose the emph{generalized interval-valued intuitionistic fuzzy Hamacher generalized Shapley Choquet integral} (GIVIFHGSCI) and the emph{interval-valued intuitionistic fuzzy Hamacher general...

متن کامل

SET - VALUED CHOQUET - PETTIS INTEGRALS Chun - Kee

In this paper, we introduce the Choquet-Pettis integral of set-valued mappings and investigate some properties and convergence theorems for the set-valued Choquet-Pettis integrals.

متن کامل

On Choquet Integrals with Respect to a Fuzzy Complex Valued Fuzzy Measure of Fuzzy Complex Valued Functions

In this paper, using fuzzy complex valued functions and fuzzy complex valued fuzzy measures ([11]) and interval-valued Choquet integrals ([2-6]), we define Choquet integral with respect to a fuzzy complex valued fuzzy measure of a fuzzy complex valued function and investigate some basic properties of them.

متن کامل

Monotone set-valued functions defined by set-valued Choquet integrals

In this paper, some properties of the monotone set-valued function defined by the set-valued Choquet integral are discussed. It is shown that several important structural characteristics of the original set function, such as null-additivity, strong order continuity, property(S) and pseudometric generating property, etc., are preserved by the new set-valued function. It is also shown that integr...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 9  شماره 2

صفحات  13- 24

تاریخ انتشار 2012-06-08

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023